Tag Archives: Bangladesh

Massive earthquake threat lurking beneath Bangladesh

A megathrust fault could be lurking underneath Bangladesh, India and Myanmar, exposing one of the most densely populated regions in the world to the risk of a large earthquake, according to new research published in Nature Geoscience.

A new GPS study measuring tiny ground movements since 2003 in the south Asia region has found strong evidence suggesting that a large tectonic fault beneath Bangladesh and east India is seismically active.

The new active fault beneath Bangladesh. Image from original paper, Steckler et al. 2016

The team, consisting of scientists from the USA, Singapore and Bangladesh, calculate that the megathrust fault could be accumulating strain energy at rates of about 15 mm per year.

Importantly, the researchers believe that the fault is “stuck” and has been storing energy for more than 400 years without a major earthquake; since the Mughal conquest of Bengal and the establishment of Dhaka as the Bangladeshi capital in the 1600s.

An earthquake occurs when the stresses become large enough that it causes the fault to break and releases all the stored energy. The 400 years of energy accumulation at 15 mm per year could result in a devastating magnitude 9 earthquake, similar in size to the Japanese quake that destroyed huge sections of the country’s northeastern coast in 2011.  Such an event would have enormous consequences for more than 140 million people living within 100km of the megathrust in Bangladesh and India.

Earthquake hazard and vulnerable populations in Bangladesh and India. Source: Steckler et al. 2016

The tectonic activity of south Asia is a consequence of the collision of the Indian subcontinent with Asia, a process that began nearly 50 million years ago and is still occurring today. This monumental collision resulted in the uplifting of Tibet and the formation of the Himalayan mountain range. Over millions of years these mountains have been slowly eroded and deposited their rich soils onto the Bangladeshi plains by a network of giant rivers. The thick sediments have made the Bangladeshi plains some of the most agriculturally productive in the world.

While the sediments can take up some of the energy along the newly proposed fault, they’re not especially stable, particularly around the rapidly developed eastern outskirts of Dhaka. If a major earthquake strikes, the sediments could even amplify the seismic waves, causing further destruction.

“Dhaka’s basically like building a city on a bowl of Jell-O [jelly],” says Steckler, lead author of the new study, implying that even small earthquake shaking could be amplified by the sediments.

The Savar building collapse in 2013, which resulted in over 1100 deaths, showed the world that building codes in Bangladesh are not strictly enforced. If buildings are collapsing on their own, it is a terrifying prospect to consider what would happen during an earthquake. The lack of preparedness is clear and it is essential for the Bangladeshi government to make long-term changes to promote greater seismic awareness and stricter enforcement of building codes.

More information:
[1] The original paper: http://www.nature.com/ngeo/journal/vaop/ncurrent/full/ngeo2760.html

Plight of the Bangladeshi

Lying on the floodplains of the mighty Ganges, Brahmaputra and Meghna rivers Bangladesh is a rich, fertile land. These giant river systems meet in the centre of the country and flow together into the Bay of Bengal which, at over 1600km wide, is the largest delta in the world.

Rising Sea Level

Bangladesh is often cited as one of the countries that will be most negatively affected by rising sea levels from human induced climate change. Two thirds of the country lies less than 5m above of sea level. With vast regions to the south much less than a 1m above sea level. The Intergovernmental Panel on Climate Change (IPCC) claims that just 1m rise in sea level could directly expose nearly 14 million people and result in potentially 17% land loss in southern Bangladesh.


Most of the country receives on average more than 2.5m of rainfall a year, 80% of which falls in about 4 months during the peak monsoon season, resulting in large annual floods. The flood waters bring nutrient rich clays and silts from the high Himalayas and deposit them on the river floodplains. These rich soils produce bountiful harvests of rice and other crops. Unsurprisingly, farming is the most common profession.

A flooded street. Source: NASA

However floods, once welcomed by farmers and their families are now harbingers of disaster. Human induced climate change has resulted in more erratic monsoon weather patterns with often larger than normal volumes of water being delivered in shorter time intervals. The resulting floods have had devastating effects on the Bangladeshi people. In 2012 three large floods hit the country in swift succession between the months of July and September directly affecting more than 5 million people. These are now a common annual occurrence.


Bangladesh is also subject to annual tropical cyclones, storm surges and tornadoes. Some of the worst natural disasters in recorded history were results of cyclonic storms in the Bengal region. Among them, the 1970 Bhola cyclone which claimed over 500,000 lives! Worryingly new research into the impacts of climate change has shown that large cyclonic storms will become a more common occurrence in the years and decades to come.


The foothills of the great Himalayan mountain belt has historically been the location of many large earthquakes. Earthquakes in the continent tend to be more infrequent compared to regions such as Japan and California. However this makes them more unpredictable and often unexpected. But when one does occur it can result in significant ground shaking. The 1897 magnitude 8.1 and 1950 magnitude 8.7 Assam earthquakes were two of the biggest to hit the region in recent times. The current building stock in Bangladesh is poorly built and most are not built to withstand ground shaking in an earthquake. The collapse of poorly built buildings is the greatest hazard during an earthquake.

The Savar building collapse near Dhaka Bangladesh, which killed 1129 garment factory workers. Source: Wikimedia Commons

So what can we as earth scientists do?

Bangladesh has a population of over 160 million and among the highest population density of any country in the world. With the majority of the country built on river floodplains combined with widespread corruption and ignorance a large earthquake could quite possibly result in the greatest natural calamity to have ever hit the country!

Bangladesh needs to increase its resilience if its people are to survive the multitude of natural hazards they face. Earth scientists are well placed to understand the risks involved from these hazards and can play a key role in all aspects of building a resilient infrastructure.

Climate science research is ongoing and needs to continue to better understand the affect human induced climate is having and will have on the annual monsoon. This knowledge needs to be translated into rainfall variation and flooding potentials and communicated with the people who need this information. The socio-economic issues of a rising sea level needs to be addressed and plans put in place to allow big cities to efficiently absorb and cater for migrants moving away from hazard prone coastal regions. Hydro-geologists and geochemists are helping to find sustainable clean, arsenic free water sources for drinking and farming. Seismologists and earthquake scientists are working to better understand the seismic risk in the Himalayan foothills; produce more accurate hazard maps and importantly identify the active faults within the region.

These are to name but a few of the ways earth scientists can get involved. I believe it is our moral duty to translate the practical aspects of our science into real benefits for people.


More information:
[1] http://www.ipcc.ch/ipccreports/tar/wg2/index.phpidp=446
[2] http://www.guardian.co.uk/global-development/2013/jan/23/bangladesh-floods-harbingers-disaster
[3] http://reliefweb.int/disaster/fl-2012-000106bgd
[4] http://en.wikipedia.org/wiki/List_of_Bangladesh_tropical_cyclones
[5] http://en.banglapedia.org/index.php?title=Main_Page